Very Small or Very Large Pulmonary Emboli – What Is the Best Treatment?

Stavros V. Konstantinides, MD, PhD, FESC

Center for Thrombosis und Hemostasis, University of Mainz, Germany <u>stavros.konstantinides@unimedizin-mainz.de</u>

Professor of Cardiology Democritus University of Thrace, Greece <u>skonst@med.duth.gr</u>

Lecture and consultancy honoraria: Bayer AG, Daiichi-Sankyo

MSD, Novartis, Pfizer – Bristol-Myers Squibb, Boston Scientific

Institutional research support: Bayer AG, Daiichi-Sankyo, Boston Scientific

'Small' versus 'large' PE: more than thrombus size!

RESULTS: A total of 49 studies with 13,162 patients with acute PE.

"Abnormally **increased RV/LV diameter ratio** measured on transverse sections associated with an approximately 2.5-fold risk for <u>all-cause mortality</u> (pooled OR, 2.5; 95% CI, 1.8-3.5) and <u>adverse outcome</u> (OR, 2.3; 95% CI, 1.6-3.4) and a 5-fold risk for <u>PE-related mortality</u> (OR, 5.0; 95% CI, 2.7-9.2).

Thrombus load and central location were <u>not</u> predictive for all-cause mortality, although both were associated with adverse clinical outcome."

Meinel MG, et al. Am J Med 2015;128:747-759

ESC European Society From defining 'size' \rightarrow defining clinical severity of PE of Cardiology **PATIENT WITH ACUTE PE** Anticoagulate HAEMODYNAMIC INSTABILITY? No Distinguish low- from intermediate-risk PE CHECK **1** and **2**: CLINICAL SIGNS OF PE SEVERITY, OR **2** RV DYSFUNCTION ON TTE/CTPA? **SERIOUS COMORBIDITY?** ➢ PESI Class III-IV or sPESI ≥1 ➤ Alternatively: ≥1 Hestia criterion fulfilled 1 or 2 Neither **1** nor **2** present Yes: ©ESC **HIGH RISK** INTERMEDIATE RISK LOW RISK

- 1) The impact of 'very small' PE on epidemiological measures and trends
- 2) Uncertainties in the treatment of 'very small' PE

PE case fatality rates: trends (US)

810,969 patients (Medicare), ≥65 yoa; principal discharge diagnosis PE (ICD-9), 1999-2015

- Mean age constant, 77.6 years
- Comorbidities (MI, stroke) U
- Proportion of men ①, from 36.7% to 43.8%
- Unadjusted <u>in-hospital</u> case fatality rate from 8.7% to 4.0%
- Adjusted <u>30-day</u> case fatality rate from 12.7% to 9.4%
- In the star is the star in the star is the star in the star in the star is the star is

PE case fatality rates: trends (Europe)

885,806 patients hospitalized for acute PE (ICD-10 I26) in Germany between 2005 and 2015

- In-hospital case fatality rate from 20.4% to 13.9%
- In the state of the state of

Keller K, et al. Eur Heart J 2019. doi:10.1093/eurheartj/ehz236

Author, Year	Country	Period covered	Registry database	Population (N)	30-day mortality	Length of stay
Jiménez, 2016	Europe	2001-2013	RIETE	23,858	6.7% 뇌 4.9%	13.6 뇌 9.3 days

J Am Coll Cardiol 2016;67:976-990

PE incidence in US and Europe: OPPOSITE trends

810,969 patients (Medicare), ≥65 yoa, principal discharge diagnosis PE (ICD-9), 1999-2015

Annual hospitalization rate from 120
 187 per 100,000 beneficiaries

Bikdeli B, et al. *JAMA* 2019;322:574-576

885,806 patients hospitalized for PE (ICD-10 I26) in Germany, 2005-2015

Annual incidence rate from 85 7 109 per 100,000 population

Keller K, et al. Eur Heart J 2019. doi:10.1093/eurheartj/ehz236

Danish population of 4,301,000, *first-time* acute PE (ICD-10 I26), 2004-2014

Annual incidence rate from 45 7 84 per 100,000 population

Lehnert P, et al. Thromb Haemost 2018;118:539-546

Why are incidence rates rising? An ageing population

Bars: numbers of patients per age group. Line: in-hospital mortality rate

White RH et al. *Circulation* 2003;107:I-4; Anderson FA et al. *Arch Int Med* 1991;151:933-938

Keller K, et al. Eur Heart J 2019. doi:10.1093/eurheartj/ehz236

Why are incidence rates rising? Overuse of CTPA

Schulman S, Ageno W, Konstantinides S. *Thromb Haemost* 2017;117:1219-1229 Photos: Courtesy KF Kreitner, University Medical Center Mainz 1993-1998 versus 1998-2006:

- PE incidence: unchanged before CTPA,
 81% after CTPA
- Case fatality: U before CTPA,
 U 36% after CTPA
- Presumed complications of anticoagulation • 71% after CTPA

How important is *very small* PE? Does it need treatment?

Schulman S, Ageno W, Konstantinides S. *Thromb Haemost* 2017;117:1219-1229 Photos: Courtesy KF Kreitner, University Medical Center Mainz

Retrospective studies: **sub-segmental PE** on local reading, without associated DVT, no anticoagulation

Study	n	Recurrent VTE	95% CI
Eyer 2005	25*	0	(0-13.7)
Le Gal 2006	8	0	(0-32.4)
Donato 2010	22	0	(0-15.4)
Pena 2012	18	0	(0-18.5)
Goy 2015	37**	0	(0-9.5)

Eyer BA, et al. *AJR* 2005;184:623–8 Le Gal G. et al, *J Thromb Haemost* 2006; 4: 724–3 Donato AA, et al. *Thromb Res* 2010; 126: e266–70 Pena, et al. *J Thromb Haemost* 2012; 10: 496–8 Goy J, et al. *J Thromb Haemost* 2015; 13: 214–8 *: 25 with follow-up among 32 patients **: no systematic search for DVT

Management of subsegmental / incidental PE

Clinical setting	Suggested management ^a	Comments
Subsegmental PE	Single subsegmental PE in an outpatient without cancer and with-	• Poor interobserver agreement for the
	out proximal DVT:	diagnosis of subsegmental PE; diagnosis
	Clinical surveillance.	to be confirmed by an experienced
	Single subsegmental PE in a hospitalized patient, a patient with	thoracic radiologist.
	cancer, or if associated with confirmed proximal DVT:	• Suggestion based on indirect evidence,
	Anticoagulant treatment.	only limited data available.
	Multiple subsegmental PE:	
	Anticoagulant treatment.	

What else is important for low-risk PE?

CTPA = computed tomography pulmonary angiography; PESI = Pulmonary Embolism Severity Index; RV = right ventricular; TTE = transthoracic echocardiography.

2019 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2020;41(4):543-603

Which is the best treatment for acute 'very large' PE?

- 1) Priorities in acute PE with hemodynamic instability (high risk)
- 2) Priorities in acute intermediate-risk ('submassive') PE

Which are the priorities in acute high-risk PE?

CTPA = computed tomography pulmonary angiography; RV = right ventricular; TTE = transthoracic echocardiography

Which criteria for 'best treatment' in an acute situation?

> It should work in everyone and everywhere

- > It should be standardized, depend as little as possible on operator
- It should be instituted promptly and work fast
- It should be safe
- > It should be broadly available
- It should be affordable

> It should be backed by solid scientific <u>and</u> clinical evidence

Integrated risk-adapted management of PE

CTPA = computed tomography pulmonary angiography; PESI = Pulmonary Embolism Severity Index; RV = right ventricular; TTE = transthoracic echocardiography.

Systemic thrombolysis – efficacy (death \downarrow): Meta-analysis

	Thrombo	olysis	Co	ontrol	M-H. Odds Ratio			
Study	events	Total	Events	Total		OR	(95%CI)	Weights
1 – Studies including high-risk PE		12/20		10000	1	121222		
UPET (1970)	6	82	7	78		0.80	(0.26; 2.50)	16.0%
Ly (1978)	1	14	2	11		0.35	(0.03; 4.42)	5.0%
Dotter (1979)	1	15	2	16		0.50	(0.04; 6.17)	4.4%
Jerjes-Sanchez (1995)	0	4	4	4 •		0.01	(0.00; 0.77)	9.8%
Fixed effect model	8	115	15	109		0.48	(0.20; 1.15)	35.2%
Heterogeneity: 1 ² =22.2%								
2 - Intermediate risk PE								
Becattini (2010)	0	28	1	30		0.35	(0.01; 8.83)	3.4%
Fasullo (2011)	0	37	5	35 -		0.07	(0.00; 1.39)	13.4%
Meyer (2014)	6	506	9	499		0.65	(0.23; 1.85)	21.6%
Fixed effect model	6	571	15	564	\checkmark	0.42	(0.17; 1.03)	38.5%
Heterogeneity: I ² =2%								
3 - Low and intermediate risk PE								
Marini (1988)	0	20	0	10				0.0%
Levine (1990)	1	33	0	25		- 2.35	(0.09; 60.24)	1.3%
Stein (1990)	1	9	0	4	! •	- 1.59	(0.05; 47.52)	1.4%
Dalla -Volta (1992)	2	20	1	16		1.67	(0.14; 20.23)	2.4%
Goldhaber (1993)	0	46	2	55		0.23	(0.01; 4.92)	5.4%
Konstantinides (2002)	4	118	3	138		1.58	(0.35; 7.20)	6.4%
Kline (2013)	1	40	1	43		1.08	(0.07; 17.81)	2.3%
Sharifi (2013)	1	61	3	60		0.32	(0.03; 3.13)	7.2%
Fixed effect model	10	347	10	351		0.96	(0.41; 2.24)	26.4%
Heterogeneity: I ² =0%								
Fixed effect model	24	1033	40	1024	\$	0.59	(0.36; 0.96)	100%
Heterogeneity: I ² =0%				г		_		
				0.0	01 0.1 0.5 1 2 10	65		
				F	avours thrombolysis Favours	control		

Marti C et al. Eur Heart J 2015; 36:605-614

Systemic thrombolysis – efficacy (all): Meta-analysis

	All studies			Studies including High-risk PE	Intermediate-risk PE	Low and intermediate-risk PE	Group difference
	OR (95% CI)	P-value	l² (%)	OR (95% CI)	OR (95% CI)	OR (95% CI)	P-value
Mortality	0.59 (0.36 to 0.96)	0.034	0	0.48 (0.20 to 1.15)	0.42 (0.17 to 1.03)	0.96 (0.41 to 2.24)	0.36
PE mortality	0.29 (0.14 to 0.60)	< 0.001	0	0.15 (0.03 to 0.78)	0.17 (0.05 to 0.67)	0.63 (0.20 to 1.97)	0.23
Death or treatment escalation	0.34 (0.22 to 0.52)	<0.001	0	0.18 (0.04 to 0.79)	0.37 (0.20 to 0.69)	0.35 (0.18 to 0.66)	0.67
PE recurrence	0.50 (0.27 to 0.94)	0.031	0	0.97 (0.31 to 2.98)	0.25 (0.06 to 1.03)	0.46 (0.17 to 1.21)	0.33

Marti C et al. *Eur Heart J* 2015; 36:605-614

Systemic thrombolysis – safety (bleeding): Meta-analysis

Marti C et al. Eur Heart J 2015; 36:605-614

Thrombolysis 'first-line treatment' in high-risk PE?

- ✓ It works in everyone and everywhere
- \checkmark It is standardized, depends as little as possible on individual operator
- \checkmark It can be instituted promptly and works fast
- 😕 It is safe
- \checkmark It is broadly available
- ✓ It is affordable

It is backed by solid scientific and clinical evidence

Recommendations for high-risk PE

Recommendations	Class	Level
It is recommended that anticoagulation with UFH, including a weight-adjusted bolus injection, be initiated without delay in patients with high-risk PE. ^a	1	С
Systemic thrombolytic therapy is recommended for high- risk PE.	I.	В
Surgical pulmonary embolectomy is recommended for patients with high-risk PE, in whom thrombolysis is contraindicated or has failed.	1	С

^a After haemodynamic stabilization of the patient, continue anticoagulation as in intermediate- or low-risk PE. UFH = unfractionated heparin.

Which is the best treatment for acute 'large' PE?

1) Priorities in acute PE with hemodynamic instability ('massive')

2) Priorities in acute intermediate-risk ('submassive') PE

PEITHO: Systemic thrombolysis is effective

				Plac (n=/	P value	
		n	(%)	n	(%)	
All-cause mortality hemodynamic collar within 7 days of randomization	13	(2.6)	28	(5.6)	0.015	
ITT population 0.23 0.44 0	0.88 				2.00	
Thrombolysis sup	Odo <mark>erior</mark>	ds ratio				

Meyer G et al, for the PEITHO Investigators. N Engl J Med 2014;370:1402-11

PEITHO: Systemic thrombolysis is unsafe

	Tenecteplase (n=506)		Placebo (n=499)		P value
	n	(%)	n	(%)	
Non-intracranial bleeding					
Major	32	(6.3)	6	(1.5)	<0.001
Minor	165	(32.6)	43	(8.6)	<0.001
Strokes by day 7	12	(2.4)	1	(0.2)	0.003
Hemorrhagic	10		1		
Ischaemic	2		0		

Meyer G et al, for the PEITHO Investigators. N Engl J Med 2014;370:1402-11

No helpful 'thrombolysis bleeding scores' exist

Derived from 9,703 patients of the *nationwide in-patient sample database* (NIS) 2003-2012

1.8% suffered intracranial bleeding

Prognostic variable	Odds ratio	Upper 95 % Cl	Lower 95 % Cl	P-value	Points assigned in PE-CH
Peripheral vascular disease	1.59	2.90	1.12	0.049	1
Prior myocardial infarction	1.80	1.99	1.33	0.046	1
Age>65 (Elderly)	1.99	1.97	2.01	0.007	1
Prior CVA	30.90	36.5	27.21	<0.001	5

Chatterjee S, et al. Thromb Haemost 2017;117:246-251

Thrombolysis as 'first-line treatment' in intermediate risk?

- \checkmark It works in everyone and everywhere
- \checkmark It is standardized, depends as little as possible on individual operator
- \checkmark It can be instituted promptly and is fast
- 😕 lt is not safe
- \checkmark It is broadly available
- ✓ It is affordable
- S It is not backed by solid evidence

Recommendations for intermediate-risk PE

Recommendations	Class	Level	
Reperfusion treatment			
Rescue thrombolytic therapy is recommended for patients with haemodynamic deterioration on anticoagulation treatment.	1	В	
As an alternative to rescue thrombolytic therapy, surgical embolectomy or percutaneous catheter- directed treatment should be considered for patients with haemodynamic deterioration on anticoagulation treatment.	lla	С	SC
Routine use of primary systemic thrombolysis is not recommended in patients with intermediate- or low-risk PE.	ш	В	0E
2019 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. <i>Eur Heart J</i> 2020;41(4):543-603			

Improving safety with systemic reduced-dose lysis? Hardly available data

Reduced versus standard dose

Meta-analysis of 3 studies

	low do	se	standard	dose		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.3.1 Major bleeding							
Goldhaber 1994	2	61	2	29	20.3%	0.46 [0.06, 3.42]	
Sors 1994	3	36	4	17	38.5%	0.30 [0.06, 1.51]	
Wang 2010	2	65	5	53	41.3%	0.30 [0.06, 1.64]	
Subtotal (95% CI)		162		99	100.0%	0.33 [0.12, 0.91]	◆
Total events	7		11				
Heterogeneity: Chi ² = 0.	.13, df = 2	2 (P = 0	0.94); l ² = 0	%			
Test for overall effect: Z	z = 2.14 (l	P = 0.0	3)				
1.3.2 Recurrent PE							
Goldhaber 1994	6	61	2	29	41.5%	1.47 [0.28, 7.79]	
Sors 1994	2	36	1	17	21.8%	0.94 [0.08, 11.16]	
Wang 2010	1	65	2	53	36.8%	0.40 [0.04, 4.52]	
Subtotal (95% CI)		162		99	100.0%	0.96 [0.30, 3.04]	-
Total events	9		5				
Heterogeneity: Chi ² = 0.	.76, df = 3	2 (P = 0	0.68); l ² = 0	%			
Test for overall effect: Z	2 = 0.07 (I	P = 0.9	5)				
1.3.3 All cause mortali	ity						
Goldhaber 1994	5	61	1	29	27.7%	2.50 [0.28, 22.44]	
Sors 1994	0	36	0	17		Not estimable	
Wang 2010	1	65	3	53	72.3%	0.26 [0.03, 2.58]	
Subtotal (95% CI)		162		99	100.0%	0.88 [0.23, 3.37]	
Total events	6		4				
Heterogeneity: Chi ² = 1.	.95, df = 1	1 (P = 0).16); l ² = 4	9%			
Test for overall effect: Z	z = 0.19 (l	P = 0.8	5)				
						0.0	01 0.1 1 10 100
							low dose standard dose
Test for subgroup differ	ences: C	$hi^2 = 2.1$	28, df = 2 (l	P = 0.32), l ² = 12.3	3%	

PEITHO III: Trial flow

A reduced dose of intravenous thrombolytic treatment for patients with intermediate-high-risk acute pulmonary embolism

©The PEITHO III Steering Committee, 2020

HI-PEITHO: Study flow

Catheter-directed, ultrasound-assisted low-dose thrombolytic treatment for patients with intermediate-high-risk acute PE

HI-PEITHO Promotions

Boston Scientific Internal – Access Limited to all Internal BSC Personnel.

PE 2020: Multidisciplinary approach by the Pulmonary Embolism Response Team

Jaber WA, et al. J Am Coll Cardiol 2016;67:991-1002